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Figure 1: Future exploration teamswill be composed ofmany robotic agents thatmust communicate and cooperate to succeed.

ABSTRACT
The future of deep space exploration demands a shift in the current
paradigm of robotic planetary exploration. Mission Operators on
Earth spend days planning just short sequences of robotic explo-
ration activities onMars due to the limited-bandwidth, high-latency
interplanetary communications and low levels of robot autonomy.
We propose deploying robots that perform unsupervised seman-
tic mapping of their environments as well as active learning to
improve the efficiency of data exchange and activity planning be-
tween robots and human operators. Robots that build and transmit
high-level semantic maps and learn by querying operators on the
science objectives of the mission can improve mission productivity.
Multi-robot space missions may utilize similar methods to effi-
ciently communicate between different robotic assets. As robot
exploration teams become larger and heterogenous, the sophisti-
cation of human-robot and multi-robot cooperation should grow
with them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SpaceCHI ’21, Saturday May 14, 2021, Yokohama, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Hardware → Sensor applications and deployments; • Computer
systems organization→ Robotic autonomy.
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1 INTRODUCTION
Planetary robotic exploration is a time-costly endeavour. Mission
controllers count their days in Sols, readjusting their sleep cycles
to the Martian calendar, in order to curate daily navigation plans
for Mars rovers that may well be rendered obsolete when the rover
crests the next hill. The cycle of downlinking data, analyzing, activ-
ity planning, and uplinking a day’s plan can take up to 3 Sols, and
waiting for communication windows can lead to entire “restricted
sols” where rover activities are severely limited [8]. Imagine a fleet
of planetary robots that performs this daily planning on their own,
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querying Mission Control when they’ve found something of in-
terest, exchanging scientific information, and refining their own
scientific modelling with each new communication from its Science
Operations team. More intelligent human-robot and multi-robot
communication and cooperation will enable missions to achieve
greater scientific returns with the same hardware, thus increasing
the efficiency and return on investment of deep space exploration.

A key challenge in this paradigm shift is that a robot collects
vast amounts of data about its environment, yet lacks its human
operator’s understanding of the scientific context needed to inter-
pret that data [8] and make decisions about how to proceed. Deep
space robots communicate without the advantage of modern high-
speed communications that would facilitate the transfer of such
data, and contend with transmission rates below 1 Mbps, latencies
from minutes to hours, and intermittent channel availability. These
communications limitations have impeded the development and
deployment of effective autonomous exploration and multi-robot
distributed exploration systems. This paper will explore how new
paradigms for human-robot interaction, human-robot cooperative
planning and multi-robot federations, enable communication band-
width to be utilized far more efficiently in order to maximize the
scientific return of the exploration mission achievable under given
communication limitations.

2 RECENTWORKS
A popular approach to increase scientific returns is “opportunistic
science”, where the science team specifies simple tests that the
robot autonomously performs to decide whether to activate other
science instruments [5]. For example, the Mars Science Laboratory
Curiosity uses the AEGIS system to detect rocks matching pre-
specified characteristics while moving; this enables the rover to
autonomously target other sensors at such targets and have the
data ready for the next communication cycle, avoiding hours of
back-and-forth interplanetary communication [7].

More complex models enable robots to understand enough about
their environment and scientific objectives to autonomously deter-
mine targets of interest to visit. This “autonomous planning” vastly
outperforms human remote control in achieving well-specified sci-
entific objectives, and requires no human-robot interaction, making
it far more scalable. For example, Bayesian networks have been used
by an analog Mars rover to model geological science objectives as
well as the spatial distribution of geological phenomena, enabling
the rover to autonomously collect a large number of scientifically
valuable observations in short time with no human oversight [1].
However, while a team of scientists can work to specify the science
objectives that guide this autonomous planning, the rover itself
cannot yet be deployed with the domain knowledge and judgment
of even one scientist. Thus a fully autonomous robot’s inflexible
and imperfect understanding of the scientific objectives may lead
it to ignore unexpected high-value targets, or spend too much time
observing relatively low-value targets.

A key motivation for crewed missions has been that humans are
adaptable and can communicate plans and ideas, whereas robots
can only collect and transmit raw data [13]. This is rapidly chang-
ing, as novel unsupervised semantic mapping systems enable robots

to autonomously understand and recognize patterns in their oper-
ating environment and more efficiently communicate with other
robots and humans [12]. Semantic maps compactly represent the
variety and spatial distribution of unique phenomena in the envi-
ronment using a few discrete labels; for example, in a colour-coded
semantic map of Mars, one colour would represent sandstone while
another would represent basalt rocks. New labels can be learned in
situ by the robot and, since many natural phenomena are strongly
spatially correlated, these maps tend to be highly compressible
and much smaller than natural images while still being human-
interpretable [9]. Human operators can easily choose which parts
of a semantic map to request visual observations of and use those
images to inform their decisions on where to send the robot next.
Alternatively, if the robot can be taught how the learned semantic la-
bels correlate to high-level mission objectives, it can autonomously
handle low-level planning.

3 MAXIMIZING COMMUNICATION
EFFICIENCY IN COOPERATIVE PLANNING

Systems for interplanetary human-robot communication and con-
trol are often characterized through the lens of sliding autonomy [4],
presented visually in Fig. 2, left. Greater autonomy is appealing
because it enables greater mission returns when communication is
highly constrained or unavailable, and provides easier scalability to
large multi-robot deployments. While sliding autonomy is a useful
paradigm in many areas of human-robot interaction, this perspec-
tive reinforces the false beliefs that more autonomy is always better
and higher levels of autonomy should mean less human-robot inter-
action [2].1 A better way to characterize an exploration system is by
its ability to leverage communication bandwidth to help in achiev-
ing the science objectives, as seen in Fig. 2, right. For example, when
communications are increasingly constrained, remote controlled
systems have decreasing performance, whereas systems without
human-robot interaction, such as waypoint following robots, will
have constant performance. This new perspective highlights that
developing more sophisticated techniques that enable humans and
robots to communicate more efficiently is potentially more impor-
tant than only expanding what robots can do autonomously.

As an example, consider how perfectly specifying the scientific
objectives in advance of the mission is impossible when little is
known a priori about the exploration environment, presenting a
barrier to fully autonomous planning. Human-robot cooperative
planning overcomes this by having the robot and human exchange
just enough information that the robot understands the science ob-
jectives well enough to go where the human would have instructed
it if they could access all the robot’s data. We propose that the best
way to implement this paradigm is for the robot to handle semantic
mapping and most low-level planning, but to query the operator
with questions about the mission objectives. Semantic mapping
means that the robot understands what it has found in its environ-
ment and can predict what it might observe in unvisited locations.
This task is typically performed with machine learning algorithms,
such as [15], and is well suited to the robot team member as it
always has access to the most up-to-date data.

1Consider how humans, generally held as the gold-standard for autonomous agents,
still make extensive use of human-human interactions in achieving complex tasks.
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Figure 2: Left: Sliding autonomy ranks systems based on how much of their behaviour is fully autonomous. Right: We argue
that a more useful perspective considers howwell the system utilizes its communication budget to achieve mission objectives.

Learning the mission objectives during the mission using queries
is feasible because the robot only needs to ask the operators ques-
tions that help it determine which trajectories are best aligned with
the mission objectives, so that it makes the same decisions that
they would. As long as the number of unique types of phenomena
encountered increases sublinearly over time, only a small subset of
data needs to be sent to the operator to learn how those phenomena
relate to the mission objectives. In ocean exploration analog exper-
iments, this approach to human-robot cooperative exploration was
found to result in vastly more productive missions than those based
on the more traditional approach of pre-planned waypoints [11]. It
was also found that some algorithms for choosing which questions
to ask the operator resulted in greater performance over certain
ranges of communication bandwidth levels, demonstrating the im-
portance of evaluating a novel system’s performance as a function
of bandwidth.

4 THE FUTURE: SCALING THROUGH
MULTI-ROBOT FEDERATIONS

With the upper limit of landable rover mass being reached, it is
likely current monolithic systems such as the Curiosity rover will
be replaced by smaller, cooperative units with distributed func-
tionality. This trend is being seen in current and planned space
exploration missions. Building on the technology demonstration
of the Ingenuity helicopter accompanying the Mars Perseverance
rover, future Mars rovers will be accompanied by a scouting he-
licopter that can assist in identifying science targets, retrieval of
scientific caches for analysis and return to Earth, and path plan-
ning and obstacle avoidance [3]. Larger heterogeneous robot teams
equipped with specialized functions will enable distributed explo-
ration of even more diverse environments, such as subsurface caves
and lavatubes on the Moon or Mars [6, 10]. To coordinate such
teams, where robotic assets carry different sensor and instruments
suites and are designed with different mobilities, pertinent science
and mapping information will need to be communicated succinctly
and efficiently between assets. Lightweight aerial vehicles might
provide high level mapping to ground assets that can make more
computationally intensive planning decisions, and direct aerial and
ground vehicles to new sites of interest. Outer planet worlds like Ti-
tan and Europa offer exciting science opportunities for these types
of robotic exploration [13] however the extreme communication
latencies involved in such missions will make efficient exploration

and communication between robots and operators even more criti-
cal mission requirements.

In order to efficiently meet science objectives, multi-robot mis-
sions (e.g. [6, 16]) will require effectivemeans of communicating key
science data between assets without relying on constant human in-
put. Thus we extend our earlier concepts to the human-multi-robot
setting: the team (human and robots) should share just enough
information among each other that each robot performs actions
the humans would command if they had access to the data of every
robot. For the robots to agree on their optimal actions, it is suffi-
cient that they reach consensus on the global semantic map, their
individual positions on that map, and the mission objectives. Multi-
Robot Simultaneous Localization and Mapping enables robots to
reach consensus on their relative locations and the global seman-
tic map [14], while consensus on mission objectives requires that
answers to queries are shared between robots.

These conditions ensure that the exploration task is efficiently
distributed so that the scientific return of 𝑁 robots is about 𝑁 times
the return of a single robot. However, we believe superlinear scaling
is possible by leveraging multi-robot federations; this describes a
system in which the robots actively plan to help each other explore
more efficiently. For example, one robot may take an opportunity to
move closer to another in order to help it construct its semantic map,
or may ask the operators a question meant to help another robot.
As robotic explorers develop a more sophisticated understanding
of their environment and objectives, and teams become hetero-
geneous, the possibilities for effective collaboration will expand
exponentially.
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