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Motivating Example

Figure 1: We have a team of gliders (blue triangles), and would like to find the deepest part of the
caldera quickly so that we have plenty of time to take photos of benthic life.
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The Sampling Problem

We wish to improve our understanding of the world (some quantity of interest)

• Our example: where is the deepest part of the caldera?

What do we need to consider?

• The robot has a time-varying physical state
• The robot has a model of the world, represented by the information state
• The robot has a program, aka policy, that tells it what to do in any state
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The Sampling Problem

We will explain how to model the world, decide where to sample, and improve our
model given a new sample.
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Modeling

P = (x1, y1)

I

1

Caldera example

1

Two states:
1. Physical State P

2. Information State I
Overview of Sampling — What is Sampling? 13/114



Modeling

P = (x1, y1)

I

1

Caldera example

1

2

2 I

P = (x2, y2)

Two states:
1. Physical State P

2. Information State I
Overview of Sampling — What is Sampling? 14/114



Modeling

P = (x1, y1)

I

1

P = (x3, y3)

I

Caldera example

1

2

2

3

3

I

P = (x2, y2)

Two states:
1. Physical State P

2. Information State I
Overview of Sampling — What is Sampling? 15/114



Modeling

P = (x1, y1)

I

1

I

P = (x3, y3)
P = (x4, y4)

I

Caldera example

1

2

2

3

3

4

4

I

P = (x2, y2)

Two states:
1. Physical State P

2. Information State I
Overview of Sampling — What is Sampling? 16/114



Overview of Sampling Strategies

Fixed Strategies

Standard Paths Informative
Paths

Adaptive Strategies

Dynamic
Replanning

Bayesian
Optimization
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Fixed Sampling Strategies

Definition: Fixed Sampling
A type of sampling in which the next sample location does not depend on any
previously sampled values.

Some common fixed sampling strategies:

• Standard Patterns (e.g. lawnmower)
• Informative Paths
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Fixed Sampling Examples: Standard Patterns

Features:
• Can guarantee complete coverage
• Efficient for complete searches1

When to use it:
• Enough time for an exhaustive search
• No cost or limit to sampling
• Finding the ”needle in a haystack” (e.g.
treasure chest)

Figure 2: Boustrophedonic (lawnmower)
patterns1: Used since ancient times, the ”ox
turning” path for plowing a field.

1Choset and Pignon, “Coverage Path Planning: The Boustrophedon Cellular Decomposition”, 1998.
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Fixed Sampling Example: Standard Patterns

Figure 3: Fixed sampling using a standard ”lawnmower” pattern.
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Fixed Sampling Examples: Informative Paths

Features:
• Objective function f(x) can incorporate
knowledge about the world

• Maximize
∫
P f(x)dx along the path P

When to use it:
• There is a good objective function for
your application

• Using a few simple robots (i.e.
optimization is tractable)

Figure 4: A trajectory formed by an evolutionary
process2 to maximize coverage while avoiding
the black squares.

2Hitz, Galceran, Garneau, Pomerleau, and Siegwart, “Adaptive continuous-space informative path planning for
online environmental monitoring”, 2017
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Adaptive Sampling

Definition: Adaptive Sampling
Sampling in which sample locations are chosen based on previous samples from the
same mission.

Why is it worth the extra computation? Things we observe are often spatially correlated:

• Many environments are described by continuous functions (e.g. seafloor depth)
• Many discrete phenomenon occur in clusters (e.g. volcanoes, fish, corals)

=⇒ A measurement at one point gives us hints on what we would measure nearby!
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Adaptive Sampling Examples: Adaptive Replanning

Features:
• Refines IPP solution after each sample
• Can limit deviation from base path

When to use it:
• You are already using IPP
• You only have a single robot, or the
robots have assigned zones

Figure 5: An IPP trajectory (left) that was
replanned between two milestones (right)
based on samples collected along the way3.

3Hitz, Galceran, Garneau, Pomerleau, and Siegwart, “Adaptive continuous-space informative path planning for
online environmental monitoring”, 2017
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Adaptive Sampling Examples: Bayesian

Features:
• No need for pre-computed base path
• Multiple robots can collaborate easily
• Efficiently finds global optimum (given
a good prior world model)

When to use it:
• Multi-agent sampling
• Sufficient on-board computing power Figure 6: After each timestep, the robot chooses

the move that gives it the most information4.

4Flaspohler, Preston, Michel, Girdhar, and Roy, “Information-Guided Robotic Maximum Search in Partially
Observable Continuous Environments”, 2019
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Recall: Modeling

Two states:
1. Physical State P
2. Information State I

Caldera example

1
2

3

4

Physical State:
1. Motion constraints
2. Timing constraints/costs

Information State:
1. State of the world 
2. Update after acquiring new 

information/samples

The Information State and Adaptive Sampling — Modelling the World 27/114



Adaptive Sampling in Information State

• Ignore the physical state, and focus on information state
1. Ignore motion constraints, time constraints …

• Learn about:

1. How to model information state?

2. How and what to sample, given an information state? 

3. How to update the information state?

4. Generic adaptive sampling algorithm

5. When is adaptive sampling better than an offline design?

Add motion constraints later … 
The Information State and Adaptive Sampling — Modelling the World 28/114



Adaptive Sampling in Information State

• What is adaptive sampling in 
information state?
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• Have to locate 

• Could be anywhere

• How do you sample?

Probed regions

Adaptive Sampling in Information State

• What is adaptive sampling in 
information state?
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A priori design: random samples

Generate N uniformly distributed 
samples/locations for probing

Probed regions

Adaptive Sampling in Information State

• What is adaptive sampling in 
information state?
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Adaptive design: 

Generate the next sample, based 
on the information gathered of the 
previous sample

• What is adaptive sampling in 
information state?

Adaptive Sampling in Information State
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Adaptive design: 

Generate the next sample, based 
on the information gathered of the 
previous sample

• What is adaptive sampling in 
information state?

Adaptive Sampling in Information State
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Adaptive design: 

Generate the next sample, based 
on the information gathered of the 
previous sample
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Adaptive design: 

Generate the next sample, based 
on the information gathered of the 
previous sample

• What is adaptive sampling in 
information state?

Adaptive Sampling in Information State
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• Advantages of adaptive sampling

• A priori design may be wasteful of 
resources

• Take too many samples to achieve a 
certain accuracy

• Sequential design (adaptive sampling) 
makes use of the information acquired 

• Next:
• Mathematical formulation

• Modeling the Information State

Adaptive Sampling in Information State
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• Advantages of adaptive sampling

• A priori design may be wasteful of 
resources

• Take too many samples to achieve a 
certain accuracy

• Sequential design (adaptive sampling) 
makes use of the information acquired 

• Next:
• Mathematical formulation

• Modeling the Information State

Adaptive Sampling in Information State

Caldera example

We are interested in depth

But, it could be any thing else …. 
• Concentration, Temperature, … any spatial field
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54 sensor node deployment to measure temperature
[Krause, Singh, Guestrin “Near-Optimal Sensor Placements in Gaussian Processes: 

Theory, Efficient Algorithms, and Empirical Studies” J ML Research 2008]

• Need a joint distribution over measurements at 
54 locations

Modeling the Information State

Any suggestions?

Why?
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54 sensor node deployment to measure temperature
[Krause, Singh, Guestrin “Near-Optimal Sensor Placements in Gaussian Processes: 

Theory, Efficient Algorithms, and Empirical Studies” J ML Research 2008]

• Need a joint distribution over measurements at 
54 locations

• Simple, effective approach: 
• Joint (multi-variate) Gaussian distribution

-- mean vector

-- covariance matrix

• Analytically tractable

Modeling the Information State
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Modeling the Information State

54 sensor node deployment to measure temperature
[Krause, Singh, Guestrin “Near-Optimal Sensor Placements in Gaussian Processes: 

Theory, Efficient Algorithms, and Empirical Studies” J ML Research 2008]

• Interested in locations where no sensor is 
placed (yet).

• Need a model for measurements at infinitely 
many locations.
• Infinitely many random variables.

• Gaussian Process: natural extension 

• Used to model various spatial fields
• Temperature, pH, depth, …

Caldera 
example
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Gaussian Processes

Definition: 

Is a collection of random variables, 
any finite number of which have a 
joint Gaussian distribution

Notation:         is a random variable for each x

Mean and covariance functions:

[Rasmussen & Williams, GP for Machine Learning, 2006]

In the picture we see only variance, but covariance is 
also defined

The Information State and Adaptive Sampling — Modelling the World 43/114



Gaussian Processes

Notation:         is a random variable for each x

Mean and covariance functions:

Our information state will be modeled 
as a Gaussian process
• Randomness indicates our uncertainty 

in knowing the actual state

[Rasmussen & Williams, GP for Machine Learning, 2006]

In the picture we see only variance, but covariance is 
also defined
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Gaussian Processes: Update?

• When a new sample is obtained, the 
Gaussian process (Information state) 
is updated:

[Rasmussen & Williams, GP for Machine Learning, 2006]
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Gaussian Processes: Update?

• When a new sample is obtained, the 
Gaussian process (Information state) 
is updated:

[Rasmussen & Williams, GP for Machine Learning, 2006]

X sampling location
f sample value

Joint Gaussian distribution
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Gaussian Processes: Update?

• When a new sample is obtained, the 
Gaussian process (Information state) 
is updated:

[Rasmussen & Williams, GP for Machine Learning, 2006]

X sampling location
f sample valuesampled data

new points

Joint Gaussian distribution
Covariance

Mean

Note: the variance update does not depend on what you sample, but 
only where you sample. 
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Gaussian Process: Mean and Covariance Functions

Specifying mean and covariance is enough to define a Gaussian Process

Examples of mean and covariance functions:

• Mean function is assumed to be 0:

• Various covariance functions:
Squared Exponential Function

[Rasmussen & Williams, GP for Machine Learning, 2006]
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Gaussian Process: Mean and Covariance Functions

Specifying mean and covariance is enough to define a Gaussian Process

Examples of mean and covariance functions:

• Mean function is assumed to be 0:

• Various covariance functions:

[Krause, Guestrin “Nonmyopic Active Learning of Gaussian 
Processes: An Exploration-Exploitation Approach” ICML 2007]

Samples of pH acquired along horizontal 
transect [Harmon et al., 2006]
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Gaussian Process: Mean and Covariance Functions

Specifying mean and covariance is enough to define a Gaussian Process

Examples of mean and covariance functions:

• Mean function is assumed to be 0:

• Various covariance functions:

[Rasmussen & Williams, GP for Machine Learning, 2006]

=                               +                                                           +                                

For atmospheric concentration of CO2
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Gaussian Process: Mean and Covariance Functions

Specifying mean and covariance is enough to define a Gaussian Process
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Information State as a Gaussian Process

Specifying mean and covariance is enough to define a Gaussian Process

Is it enough for modeling the Information state?

Samples of pH acquired along horizontal 
transect [Harmon et al., 2006]

Caldera 
example
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• We may not know the mean and covariance function

- what is the mean depth?

- how is the concentration/depth/field correlated across different locations?

Information State as a Gaussian Process

Samples of pH acquired along horizontal 
transect [Harmon et al., 2006]

Caldera 
example
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• Way out:

- Impose a model on the covariance itself!

- Done with hyper-parameters

• Parameterize the covariance function 

Information State as a Gaussian Process

1. 

2. 

Hyper-parameters
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• Way out:

- Impose a model on the covariance itself!

- Done with hyper-parameters

• Parameterize the covariance function

• Model: Add a distribution on the hyper-parameters

Information State as a Gaussian Process

more generally for hyper-parameter
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• Way out:

- Impose a model on the covariance itself!

- Done with hyper-parameters

• Parameterize the covariance function

• Model: Add a distribution on the hyper-parameters

Information State as a Gaussian Process

more generally for hyper-parameter

Hyper-parameter

mean 
function

covariance 
function

Information state as a Gaussian Process
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Pause and Recall …

• Adaptive Sampling 

• Information State and Physical State

• Ignore physical state for now …

• Adaptive Sampling on Information State

• How to model the Information State?

• Information State as a Gaussian Process

• Mean and covariance function
• Update
• Hyper-parameters

• Generic Adaptive Sampling Algorithm

• Adaptive Sampling for Depth

• Caldera Example

Next
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Adaptive Sampling Algorithm: Acquisition Function

Where to sample next?

Acquisition function: 
• Defined over the space of interest
• Quantifies how good a sample at that location 

would be

Information State
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Adaptive Sampling Algorithm: Acquisition Function

Acquisition function: 
• Defined over the space of interest
• Quantifies how good a sample at that location 

would be

Examples of acquisition functions:
1. Entropy or Variance 

• Used when we want to reduce uncertainty in our information state
2. Mutual Information
3. UCB: Mean + Variance 

• Used when we are interested in the largest mean/deepest point. 
• Caldera example.

Sample at the point, where the acquisition function 
is maximized

Information State
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Generic Adaptive Sampling Algorithm

Start with: 
1. A prior information state (Gaussian Process)
2. A prior distribution on hyper-parameters
3. A prior acquisition function h()

Iterate:
1. Find the sampling location x* = argmax h(x)
2. y* = f(x*)  sampling
3. Update the Information State (Gaussian Process)
4. Bayesian update on hyper-parameters
5. Update the acquisition function h()

Information State
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Generic Adaptive Sampling Algorithm

Start with: 
1. A prior information state (Gaussian Process)
2. A prior distribution on hyper-parameters
3. A prior acquisition function h()

Iterate:
1. Find the sampling location x* = argmax h(x)
2. y* = f(x*)  sampling
3. Update the Information State (Gaussian Process)
4. Bayesian update on hyper-parameters
5. Update the acquisition function h() Stopping Criteria: 

1. Peaked hyper-parameter distribution
2. Exhausted max number of samples 
3. Variance of GP reaches within 

tolerance bound

Information State
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Adaptive Sampling Algorithm for Exploring Deepest Point

Start with: 
1. A prior information state (Gaussian Process)
2. A prior distribution on hyper-parameters
3. A prior acquisition function h()

Iterate:
1. Find the sampling location x* = argmax h(x)
2. y* = f(x*)  sampling
3. Update the Information State (Gaussian Process)
4. Bayesian update on hyper-parameters
5. Update the acquisition function h()

Caldera example

Stopping Criteria: 
1. Peaked hyper-parameter distribution
2. Exhausted max number of samples 
3. Variance of GP reaches within 

tolerance boundThe Information State and Adaptive Sampling — Picking Informative Samples 68/114



Adaptive Sampling Algorithm for Exploring Deepest Point

Start with: 
1. A prior information state (Gaussian Process)
2. A prior acquisition function h(x) =

Iterate:
1. Find the sampling location x* = argmax h(x)
2. y* = f(x*)  sampling
3. Update the Information State (Gaussian Process)
4. Update the acquisition function h()
5. Update the deepest point (with smallest f)

Stopping & Output: 
1. When max number of samples used
2. Output the deepest point obtained thus far

Caldera example
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Adaptive Sampling Algorithm for Exploring Deepest Point

Start with: 
1. A prior information state (Gaussian Process)
2. A prior acquisition function h(x) =

Iterate:
1. Find the sampling location x* = argmax h(x)
2. y* = f(x*)  sampling
3. Update the Information State (Gaussian Process)
4. Update the acquisition function h()
5. Update the deepest point (with smallest f)

Stopping & Output: 
1. When max number of samples used
2. Output the deepest point obtained thus far

Caldera example

UCB

Bayesian Optimization
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Information State: Fixed vs Adaptive Sampling

Figure 7: 1D example of fixed sampling. Figure 8: 1D example of Bayesian optimization.
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Caldera Example

Figure 9: Bayesian optimization solution for low κ = 10.
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Caldera Example

Figure 9: Bayesian optimization solution for high κ = 257.
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Adaptive vs Offline Design

• Is adaptive sampling better than an offline design?

• Recall: 

1. Uncertainty in the information is characterized by the 
covariance function

2. The variance update does not depend on what was 
observed (the sample value)!!

• Would an offline design work as well?

Covariance

Mean

X sampling location
f sample value

Information State
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Adaptive vs Offline Design

• It will (in certain cases) if the hyper-parameters are fixed

• Our goal is to reduce uncertainty/entropy (variance)

Hyper-parameter

mean 
function

covariance 
function

Information state as a Gaussian Process
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covariance 
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Adaptive vs Offline Design

• It will (in certain cases) if the hyper-parameters are fixed

• Our goal is to reduce uncertainty/entropy (variance)

• Criteria: sample to maximize entropy 

optimal offline sampling optimal offline sampling, 
given hyper-parameters

optimal adaptive design

Hyper-parameter

mean 
function

covariance 
function

Information state as a Gaussian Process

The Information State and Adaptive Sampling — Picking Informative Samples 76/114



Adaptive vs Offline Design

• It will (in certain cases) if the hyper-parameters are fixed

• Our goal is to reduce uncertainty/entropy (variance)

• Criteria: sample to maximize entropy 

optimal offline sampling optimal offline sampling, 
given hyper-parameters

optimal adaptive design

Hyper-parameter

mean 
function

covariance 
function

Information state as a Gaussian Process
If distribution on hyper-parameters is less uncertain, 
then upper and lower bounds are close
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Adaptive vs Offline Design

• It will (in certain cases) if the hyper-parameters are fixed

• Our goal is to reduce uncertainty/entropy (variance)

• Criteria: sample to maximize entropy 

If distribution on hyper-parameters is less uncertain, 
then upper and lower bounds are close

• Applies to Caldera, if we are interested in learning the depth profile

• Not when we are searching for the deepest point

• Not the entropy criteria

Caldera example
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Pause and Recall …

• Adaptive Sampling 

• Information State and Physical State

• Ignore physical state for now …

• Adaptive Sampling on Information State

• How to model the Information State?

• Information State as a Gaussian Process

• Mean and covariance function
• Update
• Hyper-parameters

• Generic Adaptive Sampling Algorithm

• Adaptive Sampling for Depth

• Caldera Example

• Adaptive Sampling vs Offline Design

• Criteria: Maximize uncertainty

• Depends on the Entropy of the    
hyper-parameter distribution
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Pause and Recall …

• Adaptive Sampling 

• Information State and Physical State

• Ignore physical state for now …

• Adaptive Sampling on Information State

• How to model the Information State?

• Information State as a Gaussian Process

• Mean and covariance function
• Update
• Hyper-parameters

• Generic Adaptive Sampling Algorithm

• Adaptive Sampling for Depth

• Caldera Example

• Adaptive Sampling vs Offline Design

• Criteria: Maximize uncertainty

• Depends on the Entropy of the    
hyper-parameter distribution

Next

• Motion Constraints

• Multi-Agent Adaptive Sampling 
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Bayesian Optimization for Sampling

1. Find the maxima of the acquisition function x∗ = argmaxx h(x)
2. Plan a path to x∗ that avoids obstacles (e.g. using A*)
3. Move to and sample at x∗

4. Update information state using the sample
5. Repeat from #1 until any time/sample constraints are reached
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Caldera Example

Figure 9: Bayesian optimization solution for low κ = 10.
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Caldera Example

Figure 9: Bayesian optimization solution for high κ = 257.
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Robot Path Planning

• Comments on the quality of the previous paths?
• When are those paths good? When are they bad?
• What more should we take into account?
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Physical and Temporal Constraints

• Unlimited time and samples:

Figure 10: The lawnmower pattern is best if time and number of samples aren’t limited.

Single-Agent Bayesian Adaptive Sampling — Modelling Physical State and Actions 85/114



Physical and Temporal Constraints

• Unlimited time, but limited/expensive samples:

Figure 10: BO only takes samples at locations that maximize our acquisition function.
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Physical and Temporal Constraints

• Unlimited free samples, but limited time?
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Physical and Temporal Constraints

• Unlimited free samples, but limited time?
• Some combination of constraints (e.g. limited time and samples)?
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Robot Modelling

The robot state X(t) contains the physical state of the robot at time t, such as:

• Robot location
• Robot velocity
• Battery level
• Water current directions and flow rate
• ...

In general, X(t) can be partially or fully observable.
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Simplified Robot Model

• We use a simple 2D and fully observable robot state:

Xt = ⟨xt, yt⟩

• We discretize time and space:

xt, yt ∈ Z

t = 1, . . . , T

• Our information state is the GP depth model based on our samples:

It = GP(St)

St = {⟨xi, yi, fobs(xi, yi)⟩}kti=1
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Robot Action Model

Our robots have a variety of actions:

• Moving

• Limited speed
• Motion constraints

• Using a sensor
• Free: Taking a depth measurement

• Limited uses: Taking a water sample
• Costly: Picking up a rock sample
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Simplified Action Model

• Move 1 unit in one of {N, W, S, E} in unit time
• Sample depth immediately after every move
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Graph-Based Problem Formulation

Robot State: Xt = ⟨xt, yt⟩

Information State: It = GP(St), St = {⟨xi, yi, fobs(xi, yi)⟩}kti=1

Robot Actions: at ∈ A = {N,E,S,W}

Physical Update: Xt+1 =
{
⟨xt, yt + 1⟩ , at = N

...
...

Information Update: St+1 = St ∪ ⟨xt+1, yt+1, fobs(xt+1, yt+1)⟩
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Graph-Based Problem Formulation

⟨xt, yt⟩
St

⟨xt, yt + 1⟩
St ∪ ⟨. . . , fobs(xt, yt + 1)⟩

N

⟨xt + 1, yt⟩
S′t = St ∪ ⟨. . . , fobs(xt + 1, yt)⟩

⟨xt + 1, yt + 1⟩
S′t ∪ ⟨. . . , fobs(xt + 1, yt + 1)⟩

N

⟨xt + 2, yt⟩
S′t ∪ ⟨. . . , fobs(xt + 2, yt)⟩

E

…

E

…

t

t+ 1

t+ 2
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Graph-Based Problem Formulation

⟨xt, yt⟩
St

⟨xt, yt + 1⟩
St ∪ ⟨. . . , fobs(xt, yt + 1)⟩
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⟨xt + 1, yt⟩
S′t = St ∪ ⟨. . . , fobs(xt + 1, yt)⟩

⟨xt + 1, yt + 1⟩
S′t ∪ ⟨. . . , fobs(xt + 1, yt + 1)⟩

N

⟨xt + 2, yt⟩
S′t ∪ ⟨. . . , fobs(xt + 2, yt)⟩

E

…

E

…

t

t+ 1

t+ 2

Is this a graph or a tree?
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Graph-Based Problem Formulation

⟨xt, yt⟩
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⟨xt + 2, yt⟩
S′t ∪ ⟨. . . , fobs(xt + 2, yt)⟩

E

…

E

…

t

t+ 1

t+ 2

Are there any terminal states?
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Graph-Based Problem Formulation
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E

…

E

…

t

t+ 1

t+ 2

Do we have a goal state?
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Graph-Based Problem Formulation

⟨xt, yt⟩
St

⟨xt, yt + 1⟩
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⟨xt + 2, yt⟩
S′t ∪ ⟨. . . , fobs(xt + 2, yt)⟩

E

…

E

…

t

t+ 1

t+ 2

How should we pick an action at each time step?
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Evaluating Actions

Recall the features of a Markov Decision Process (MDP):

• Set of States ⟨Xt, It⟩

• Set of Actions at ∈ A
• Transition Relation δ : (s1,a) 7→ (s2)
• Reward Function R : (s,a) 7→ r ∈ R

R(Xt,at) =
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Evaluating Actions

Recall the features of a Markov Decision Process (MDP):

• Set of States ⟨Xt, It⟩
• Set of Actions at ∈ A
• Transition Relation δ : (s1,a) 7→ (s2)
• Reward Function R : (s,a) 7→ r ∈ R
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Evaluating Actions

Recall the features of a Markov Decision Process (MDP):

• Set of States ⟨Xt, It⟩
• Set of Actions at ∈ A
• Transition Relation δ : (s1,a) 7→ (s2)
• Reward Function R : (s,a) 7→ r ∈ R

R(Xt,at) = facq(X′t | St)
facq(Xt | St) = µ(Xt | St) + κσ(Xt | St)
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Evaluating Actions

⟨xt, yt⟩
St

⟨xt, yt + 1⟩
St ∪ ⟨. . . , fobs(xt, yt + 1)⟩

⟨xt + 1, yt⟩
S′t = St ∪ ⟨. . . , fobs(xt + 1, yt)⟩

facq(xt + 1, yt | St)

…

t

t+ 1

t+ 2
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Single Action Planning

Figure 10: Result of choosing the best action (green marks) based on the acquisition function.
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Evaluating Paths

What is S′t in this example?

E(S′t) = St ∪ ⟨. . . , µ(xt + 1, yt | St)⟩

⟨xt, yt⟩
St

⟨xt, yt + 1⟩
St ∪ ⟨. . . , fobs(xt, yt + 1)⟩

⟨xt + 1, yt⟩
S′t = St ∪ ⟨. . . , fobs(xt + 1, yt)⟩

⟨xt + 1, yt + 1⟩
S′t ∪ ⟨. . . , fobs(xt + 1, yt + 1)⟩

facq(xt + 1, yt + 1 | S′t)

⟨xt + 2, yt⟩
S′t ∪ ⟨. . . , fobs(xt + 2, yt)⟩

…

facq(xt + 1, yt | St)

…

t

t+ 1

t+ 2
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Planning based on Simulation

Figure 11: Result of choosing the best action based on highest scoring path of depth 5.
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Sequential Bayesian Optimization

Sequential Bayesian Optimization Algorithm:2

Initial state Xt = ⟨xt, yt, St⟩. For each move action at ∈ A:

1. Simulate the move: Xt+1 = δ(Xt,at)

2. Increase accumulated reward by R(Xt+1) = facq(xt+1, yt+1 | St)
3. Simulate a sample: St+1 = St ∪ {xt+1, yt+1, µ(xt+1, yt+1 | St)}
4. Repeat from #1 for every move action at+1 ∈ A at the new state
5. Increase the accumulated reward:

R(Xt,at)← R(Xt,at) + max
at+1∈A

R(δ(Xt+1,at+1))

6. Choose the action at with the largest accumulated reward

2Marchant, Ramos, and Sanner, “Sequential Bayesian Optimisation for Spatial-Temporal Monitoring”, 2014.
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Sequential Bayesian Optimization
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Sequential Bayesian Optimization
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Advantages of Sequential BO

• Easily incorporate constraints:
• Remain in safe region: xt ∈ [a, b] , yt ∈ [c,d]

• Limited mission duration: restrict t ≤ T
• Limited number of samples: add sample action, restrict k ≤ K
• Cost of taking a sample: R(X,sample) = . . .

• For continuous time planning, give each action a duration ∆t and make time an
element of the state

• Easily extended to a richer set of actions (e.g. motion primitives)

Single-Agent Bayesian Adaptive Sampling — Sequential Bayesian Optimization 98/114



Advantages of Sequential BO

• Easily incorporate constraints:
• Remain in safe region: xt ∈ [a, b] , yt ∈ [c,d]
• Limited mission duration: restrict t ≤ T

• Limited number of samples: add sample action, restrict k ≤ K
• Cost of taking a sample: R(X,sample) = . . .

• For continuous time planning, give each action a duration ∆t and make time an
element of the state

• Easily extended to a richer set of actions (e.g. motion primitives)

Single-Agent Bayesian Adaptive Sampling — Sequential Bayesian Optimization 98/114



Advantages of Sequential BO

• Easily incorporate constraints:
• Remain in safe region: xt ∈ [a, b] , yt ∈ [c,d]
• Limited mission duration: restrict t ≤ T
• Limited number of samples: add sample action, restrict k ≤ K

• Cost of taking a sample: R(X,sample) = . . .

• For continuous time planning, give each action a duration ∆t and make time an
element of the state

• Easily extended to a richer set of actions (e.g. motion primitives)

Single-Agent Bayesian Adaptive Sampling — Sequential Bayesian Optimization 98/114



Advantages of Sequential BO

• Easily incorporate constraints:
• Remain in safe region: xt ∈ [a, b] , yt ∈ [c,d]
• Limited mission duration: restrict t ≤ T
• Limited number of samples: add sample action, restrict k ≤ K
• Cost of taking a sample: R(X,sample) = . . .

• For continuous time planning, give each action a duration ∆t and make time an
element of the state

• Easily extended to a richer set of actions (e.g. motion primitives)

Single-Agent Bayesian Adaptive Sampling — Sequential Bayesian Optimization 98/114



Advantages of Sequential BO

• Easily incorporate constraints:
• Remain in safe region: xt ∈ [a, b] , yt ∈ [c,d]
• Limited mission duration: restrict t ≤ T
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• Cost of taking a sample: R(X,sample) = . . .

• For continuous time planning, give each action a duration ∆t and make time an
element of the state

• Easily extended to a richer set of actions (e.g. motion primitives3)

3Marchant, Ramos, and Sanner, “Sequential Bayesian Optimisation for Spatial-Temporal Monitoring”, 2014.
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Challenges of Sequential BO

• |A|T actions to consider

• 4 actions, 10 seconds per action, plan next 5 minutes: 430 ≈ 1020 states to consider
• Still guaranteed to find optimal solution if we truncate? What if we used a different
acquisition function (not UCB)?

• The right reward function for your application may be non-obvious
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Monte Carlo Tree Search

One way to search the tree to a deeper depth is to use MCTS. In MCTS, we randomly
sample paths, and the probability of choosing an action proportional to the average
reward it has led to in past iterations.
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Sequential Bayesian Optimization Examples

Figure 12: SBO with κ = 2.576
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Sequential Bayesian Optimization Examples

Figure 12: More explorative SBO with κ = 2.576
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Multi-Agent State Space Search

• We can collect more samples in the same amount of time using multiple robots

• But, if agents don’t know what each other are up to (or what samples have been
collected) then they may collect redundant samples

• Loses the main benefit of adaptive sampling

• Multi-agent sampling policies are based on avoiding this, using minimal
communication (bandwidth)

• Why? Some environments are highly bandwidth constrained (e.g. underwater)
• Bandwidth consumed scales at least linearly with the number of agents
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Multi-Agent Sampling Policies
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Independent Sampling

Figure 13: Independent sampling for 3 agents.
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Partition Sampling

Figure 14: Partition sampling for 3 agents.
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Joint Bayesian Optimization
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Branching factor is now |A|N so tree size is
(
|A|N

)T
; not generally practical.
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Serial Bayesian Optimization

Pick each robot’s action one by one:

1. Once a robot (#1) has picked its next move with SBO, it tells nearby robots

2. The nearby robots add simulated samples to their models (information states)
based on what they expect robot #1’s sample to be: µ

(
X(1) | S(2)

)

• Then, if any of these robots need to pick their next action in the meantime, they avoid
sampling the same places as robot #1

3. Once robot #1 has collected the sample, it tells the nearby robots

• They replace the simulated sample value with the real one
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Serial Bayesian Optimization

Figure 15: Serial Bayesian Optimization with 3 agents.
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Summary

• What is Sampling and when is it useful ?
• Fixed vs. Adaptive sampling

• The more uncertainty we have about the model parameters, the more effective adaptive
sampling is (the exploration vs. exploitation balance)

• Accounting for both the information state and physical state
• The implications of the robot’s physical constraints on the sampling process

• Multiple agent adaptive sampling
• The challenges of coordinating a multi-agent setting for safe and effective sampling
• Looking at various levels of communication
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Tutorial

The tutorial will allow you to explore our example caldera. We don’t know the model
parameters, but assume it is a GP

Since we are not actually exploring the caldera, We will provide a simulator.
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Tutorial

The tutorial will allow you to:

• experience the results acquired a fixed random sampling
• get a chance to see what happens when you apply an adaptive approach
• account for the physical constraints (and introduce an activity model)
• see what happens when many agents participate in the sampling task
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Problem Set

In the problem set you will:

• Test a Single-Agent Adaptive Sampling implementation to explore the performance
of adaptive sampling

• Implement a Multi-Agent Adaptive Sampling algorithm based on a Decentralized
approach

• Implement a Multi-Agent Adaptive Sampling algorithm based on a Centralized
approach
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Questions?
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